Monday, June 6, 2016
Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts
ABSTRACT: A model predictive control (MPC) based coordinated operation framework for a grid-connected residential microgrid with considering forecast errors is presented in this paper. This residential microgrid composes renewable energy resources (e.g., wind and solar), distributed generators (e.g., CHP), energy storages (e.g., battery bank and water tank), electrical vehicle, and smart loads (e.g. HVAC and washing machine). A novel mixed integer linear programming (MILP) problem is optimized at each decision time, on the basis of the short-term forecasts of renewable energy resources generation, load demand, and electricity price. This MILP problem is integrated into a MPC framework to reduce the negative impacts of forecast errors. Case study which considers forecast uncertainties is implemented for evaluating the performance of the proposed method and the traditional method is used. Besides, peak power price mechanism which is used to smooth the power exchanged with external grid is also considered. Moreover, a further sensitivity analysis is realized in order to discuss the impacts of energy storage units on the microgrid operation. Simulation results show that the proposed method is economic and flexible.
COMMENT: Before this paper, I was still searching for what are the attributions useful for energy management and didn't have any idea about energy management. I refer to its introduction for devices and uses the attribution as sample temporarily. But it talks optimal operation from perspective of smart microgrid without any consideration of building. Anyway, it extends my thinking and promote my work.